DPP - 2

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/46

Video Solution on YouTube:-

https://youtu.be/22HMopWfUK4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/19
Q 1. Find the radiation pressure of solar radiation on the equator of earth (assuming radiation is completely absorbed). Solar constant is $1.4 \mathrm{~kW} / \mathrm{m}^{2}$
(a) $4.7 \times 10^{-5} \mathrm{~Pa}$
(b) $4.7 \times 10^{-6} \mathrm{~Pa}$
(c) $2.37 \times 10^{-6} \mathrm{~Pa}$
(d) $9.4 \times 10^{-6} \mathrm{~Pa}$

Q 2. Parallel beam of Light of intensity I is falling on a perfect mirron of area A. If angle of incidence is 60°, Find radiation force on mirror?
(a) $\mathrm{IA} / 2 \mathrm{c}$
(b) $\mathrm{IA} / 4 \mathrm{c}$
(c) $I A / 8 c$
(d) None of these

Q 3. Light of intensity I is incident on a fixed plane surface at an angle 30° with normal to the surface. If 50% light is reflected and remaining light is absorbed then radiation pressure on the plate is: [Speed of light is c]
(a) $\frac{2 I}{C}$
(b) $\frac{9 I}{8 c}$
(c) $\frac{3 I}{8 C}$
(d) $\frac{I}{4 C}$

Q 4. A radiation of 200 W is incident on a surface which is 60% reflecting and 40% absorbing. Find the net Force acting on the surface.
(a) $1.3 \times 10^{-6} \mathrm{~N}$
(b) $1.07 \times 10^{-6} \mathrm{~N}$
(c) $1.07 \times 10^{-7} \mathrm{~N}$
(d) $1.3 \times 10^{-7} \mathrm{~N}$

Q 5. A monochromatic beam of light $(\lambda=4900 \AA$) incident normally upon a surface produces a pressure of $5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$ on it. Assuming that 25% of the light incident is reflected and the rest absorbed, find the number of photons falling per second on a unit area of thin surface.
(a) $6 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
(b) $9 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
(c) $3 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
(d) $12 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
Q. 6 A point source of light of power 300 watt is placed at centre of Blackbody hemispherical shell of radius 1 meter. Find radiation force on hemisphere ?
(a) $5 \times 10^{-7} \mathrm{~N}$
(b) $6 \times 10^{-7} \mathrm{~N}$
(c) $3 \times 10^{-7} \mathrm{~N}$
(d) $2.5 \times 10^{-7} \mathrm{~N}$

Q 7. A horizontal plane mirror of mass 2 mg is balanced in air by a vertical beam of light having intensity $1000 \mathrm{~W} / \mathrm{m}^{2}$. Assuming 100% reflection, find area of mirror?
(a) $2 \mathrm{~m}^{2}$
(b) $3 \mathrm{~m}^{2}$
(c) $6 \mathrm{~m}^{2}$
(d) None of these

Q 8. Parallel beam of intensity I is falling on a blackbody sphere of radius R. Radiation force on sphere is
(a) $(\mathrm{I} / \mathrm{c}) \times 4 \pi R^{2}$
(b) $(\mathrm{I} / \mathrm{c}) \times 2 \pi R^{2}$
(c) $(\mathrm{I} / \mathrm{c}) \times \pi R^{2}$
(d) None of these

Q 9. How many photons of wavelength $\lambda=6600 \mathrm{~nm}$ must strike a totally reflecting screen per second at normal incidence so as to exert a force of 1 N ?
(a) 1.5×10^{27}
(b) 2.5×10^{27}
(c) 5×10^{27}
(d) 5.5×10^{27}

Q 10. Light rays are incident on an opaque sheet. Then they
(a) exert a force on the sheet
(b) transfer an energy to the sheet
(c) transfer momentum to the sheet
(d) All of above are correct

Answer Key

Q. 1	b	Q. 2	a	Q. 3	b	Q. 4	b	Q. 5
c								
Q. 6	d	Q. 7	b	Q. 8	c	Q. 9	c	Q. 10
d								

