

/ideo	Solution on	Website:	https://physicsaholics.com/home/courseDetails/4	16
rueo	Solution on	wedsite	nttps://pnysicsanolics.com/nome/courseDetails/4	ŧΟ

https://youtu.be/22HMopWfUK4 Video Solution on YouTube:-

Written Solution on Website:https://physicsaholics.com/note/notesDetalis/19

- Find the radiation pressure of solar radiation on the equator of earth (assuming Q 1. radiation is completely absorbed). Solar constant is $1.4 \text{ kW/}m^2$
 - (a) 4.7×10^{-5} Pa
- (b) 4.7×10^{-6} Pa
- (c) 2.37×10^{-6} Pa
- (d) 9.4×10^{-6} Pa
- Q 2. Parallel beam of Light of intensity I is falling on a perfect mirror of area A. If angle of incidence is 60° , Find radiation force on mirror?
 - (a) IA/2c

(b) IA/4c

(c) IA/8c

- (d) None of these
- Light of intensity I is incident on a fixed plane surface at an angle 30° with normal to Q 3. the surface. If 50 % light is reflected and remaining light is absorbed then radiation pressure on the plate is: [Speed of light is c]

(a) $\frac{2I}{C}$ (c) $\frac{3I}{8C}$

- A radiation of 200W is incident on a surface which is 60% reflecting and 40% Q 4. absorbing. Find the net Force acting on the surface.
 - (a) 1.3×10^{-6} N
- (b) 1.07×10^{-6} N
- (c) 1.07×10^{-7} N
- (d) 1.3×10^{-7} N
- A monochromatic beam of light ($\lambda = 4900 \text{ Å}$) incident normally upon a surface Q 5. produces a pressure of 5 x 10⁻⁷ N/m² on it. Assuming that 25% of the light incident is reflected and the rest absorbed, find the number of photons falling per second on a unit area of thin surface.
 - (a) $6 \times 10^{20} m^{-2} s^{-1}$
- (b) $9 \times 10^{20} m^{-2} s^{-1}$
- (c) $3 \times 10^{20} m^{-2} s^{-1}$
- (d) $12 \times 10^{20} m^{-2} s^{-1}$
- Q.6 A point source of light of power 300 watt is placed at centre of Blackbody hemispherical shell of radius 1 meter. Find radiation force on hemisphere?
 - (a) 5×10^{-7} N
 - (b) 6×10^{-7} N
 - (c) 3×10^{-7} N
 - (d) 2.5×10^{-7} N
- Q 7. A horizontal plane mirror of mass 2 mg is balanced in air by a vertical beam of light having intensity $1000 \text{ W/}m^2$. Assuming 100% reflection, find area of mirror?
 - (a) $2 m^2$

(b) $3 m^2$

hysicsaholics

(c) $6 m^2$

(d) None of these

Q 8. Parallel beam of intensity I is falling on a blackbody sphere of radius R. Radiation force on sphere is

(a) $(I/c) \times 4\pi R^2$

(b) (I/c) × $2\pi R^2$

(c) $(I/c) \times \pi R^2$

(d) None of these

Q 9. How many photons of wavelength $\lambda = 6600$ nm must strike a totally reflecting screen per second at normal incidence so as to exert a force of 1N?

(a) 1.5×10^{27}

(b) 2.5×10^{27}

(c) 5×10^{27}

(d) 5.5×10^{27}

Q 10. Light rays are incident on an opaque sheet. Then they

(a) exert a force on the sheet

(b) transfer an energy to the sheet

(c) transfer momentum to the sheet

(d) All of above are correct

Q.1 b	Q.2 a	Q.3 b	Q.4 b	Q.5 c
Q.6 d	Q.7 b	Q.8 c	Q.9 c	Q.10 d